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Introduction

e Sets are one of the basic building blocks for the types
of objects considered in discrete mathematics.

e Important for counting.
e Programming languages have set operations.

® Set theory is an important branch of mathematics.

e Many different systems of axioms have been used to
develop set theory.

e Here we are not concerned with a formal set of axioms
for set theory. Instead, we will use what is called naive
set theory.
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Sets

e A set is an unordered collection of objects.
e the students in this class
e the chairs in this room

® The objects in a set are called the elements, or
members of the set. A set is said to contain its
elements.

e The notation a € A denotes that ais an element of
the set A.

¢ If 2is not a member of 4, write a ¢ A
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Describing a Set: Roster Method
e S={abcd}

e Order not important
S={abcd} ={bcad}

e Each distinct object is either a member or not; listing
more than once does not change the set.

S={ab,cd} ={ab,cb,cd}

e Elipses (...) may be used to describe a set without
listing all of the members when the pattern is clear.
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Roster Method

e Set of all vowels in the English alphabet:
V={a,e,iou}

e Set of all odd positive integers less than 10:
0=1{1,3,5,7,9}

e Set of all positive integers less than 100:

e Setofall integers less than O:
S={...,-3,-2,-1}
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Some Important Sets

N = natural numbers = {0,1,2,3....}
Z = integers ={...,-3,-2,-1,0,1,2,3,...}
Z* = positive integers = {1,2,3,.....}
R = set of real numbers

Rt = set of positive real numbers

C = set of complex numbers.

Q = set of rational numbers
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Set-Builder Notation

e Specify the property or properties that all members
must satisfy:

S={x | x is a positive integer less than 100}

O = {x | xis an odd positive integer less than 10}

O={x€eZ"|xisoddand x < 10}
e A predicate may be used:

§=i{x|P(x)}
e Example: S ={x | Prime(x)}
e Positive rational numbers:
Q*={x€ R | x= p/q, for some positive integers p,qg}
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Interval Notation

|a,b] = {x
la,b) = {x
(a,b] = {x
(ab) ={x

a< x< b}
a< x< b}
a<x< b}
a< x<b}

closed interval [a,b]

open interval (a,b)
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Universal Set and Empty Set

® The universal set U is the set containing everything
currently under consideration.

e Sometimes implicit Venn Diagram
e Sometimes explicitly stated.

e Contents depend on the context. U

e The empty set is the set with no v

elements. Symbolized @, but

{} also used.

John Venn (1834-1923)
Cambridge, UK
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Russell’s Paradox

e [et S be the set of all sets which are not members of
themselves. A paradox results from trying to answer
the question “Is S a member of itself?”

e Related Paradox:

e Henry is a barber who shaves all people who do not
shave themselves. A paradox results from trying to
answer the question “Does Henry shave himself?”

Bertrand Russell (1872-1970)
Cambridge, UK
Nobel Prize Winner
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Some things to remember

e Sets can be elements of sets.
{11,2,3},a,{b,c}}
{N,Z,QR}

® The empty set is different from a set containing the
empty set.

O +#{0}
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Set Equality

Definition: Two sets are equal if and only if they have
the same elements.

e Therefore if A and B are sets, then A and B are equal if
and only if Vz(x € A <> x € B)

e We write A = Bif A and B are equal sets.
{1,3,5} ={3,5,1}
{1,5,5,5,3,3,1} = {1,3,5}



/ \/

Subsets

Definition: The set A is a subset of B, if and only if
every element of A is also an element of B.

e The notation A € B is used to indicate that A is a subset
of the set B.

e AC B holdsifand only if Vz(z € A = x € B) is true.

1. Because a€ @ is always false, @ € S for every set S.
.. Becausea€ S—a€s, SC S, for every set S.



_Showing : — Tl

wing a Set is or I1s not a Subset
of Another Set

e Showing that A is a Subset of B: To show that A ©
B, show that if x belongs to A, then x also belongs to B.

e Showing that A is not a Subset of B: To show that A
is not a subset of B, A € B, find an element x € A with
x & B. (Such an x is a counterexample to the claim that
x € A implies x € B.)

Examples:

1. The set of all computer science majors at your school is
a subset of all students at your school.

2. The set of integers with squares less than 100 is not a
subset of the set of nonnegative integers.
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Another look at Equality of Sets

e Recall that two sets A and B are equal, denoted by
A =B, iff
Ve(x € A< x € B)
e Using logical equivalences we have that A = B iff

Ve[t e A—wzx e B)AN(xe€B —xe€ A

e This is equivalent to
ACB and BCA
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Proper Subsets

Definition: If A € B, but A #B, then wesay A is a
proper subset of B, denoted by A c B. If A c B, then

Ve(re A—wx e B)ANde(r € BAx & A)

1S true.

Venn Diagram B

@
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Set Cardinality

Definition: If there are exactly n distinct elements in S
where n is a nonnegative integer, we say that S is finite.
Otherwise it is infinite.

Definition: The cardinality of a finite set A, denoted by |
A|, is the number of (distinct) elements of A.

Examples:
1. |e|=0
2. Let S be the letters of the English alphabet. Then |S| = 26
3. {123} =3
4. |{o}] =1
5. The set of integers is infinite.
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Power Sets

Definition: The set of all subsets of a set A, denoted
P(A), is called the power set of A.

Example: If A = {a,b} then
p(A) = {Q) {a}){b}){a)b}}

e [f a set has n elements, then the cardinality of the
power set is 2" (In Chapters 5 and 6, we will discuss
different ways to show this.)
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Tuples

® The ordered n-tuple (a,a,,....,a,) isthe ordered
collection that has a, as its first element and a, as its
second element and so on until a, as its last element.

e Two n-tuples are equal if and only if their
corresponding elements are equal.

e >-tuples are called ordered pairs.

e The ordered pairs (a,b) and (c,d) are equal if and only
ifa=cand b=d.
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Cartesian Product

Definition: The Cartesian Product of two sets A and B,
denoted by A x B is the set of ordered pairs (a,b) where
a€A andb€EB.

Ax B={(a,b)lac ANbe B}
Example:
A ={ab} B-=1{1,2,3}
A x B={(ay),(a,2),(a,3), (b1),(b,2),(b,3)}

e Definition: A subset R of the Cartesian product A x B is
called a relation from the set A to the set B. (Relations
will be covered in depth in Chapter 9. )
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Cartesian Product

Definition: The cartesian products of the sets 4,,4,,......, A
denoted by 4; X A4, X ...... X A, ,is the set of ordered
n-tuples (a,,a,,......,a,) where a; belongs to A,
fori=1, ... n.
A1><A2><°°°><An:
{(al,ag, ce ,an)]ai c A; for 1 = 1,2,.. n}

Example: What is A X B X C where A = {0,1}, B = {1,2} and
C ={o0,1,2}

Solution: A X B X C ={(0,1,0), (0,1,1), (0,1,2),(0,2,0), (0,2,1),
(0)2‘)2‘))(1’1’0)) (1,1’1)’ (1)1)2‘)’ (1’2‘)0)) (1’2"]‘)’ (1’1’2‘)}
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Truth Sets of Quantifiers

e Given a predicate P and a domain D, we define the
truth set of P to be the set of elements in D for which
P(x) is true. The truth set of P(x) is denoted by

1z € D|P(x)}

e Example: The truth set of P(x) where the domain is
the integers and P(x) is “|x| = 1” is the set {-1,1}
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Boolean Algebra

e Propositional calculus and set theory are both

instances of an algebraic system called a Boolean
Algebra.

® The operators in set theory are analogous to the
corresponding operator in propositional calculus.

e As always there must be a universal set U. All sets are
assumed to be subsets of U.
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Union

e Definition: Let A and B be sets. The union of the sets
A and B, denoted by A U B, is the set:

{x|lr € AVz e B}

e Example: Whatis {1,2,3} U{3,4,5}?

Venn Diagram for AU B

Solution: {1,2,3,4,5} U
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Intersection
¢ Definition: The intersection of sets A and B, denoted
by ANB, is
{x|lr € ANz € B}

e Note if the intersection is empty, then A and B are
said to be disjoint.

e Example: What is? {1,2,3} n {3,4,5}?
Solution: {3}

e Example: What is? v
{1,2,3} N {4,5,6}?
Solution: @

Venn Diagram for A NB




Complement

Definition: If A is a set, then the complement of the A
(with respect to U), denoted by A is the set U- A

A={xeU|x¢A)}
(The complement of A is sometimes denoted by A€.)

Example: If U is the positive integers less than 100,
what is the complement of {x | x > 70}

Solution: {X | X < 70} Venn Diagram for Complement
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Difference

e Definition: Let A and B be sets. The difference of A

and B, denoted by A - B, is the set containing the
elements of A that are not in B. The difference of A

and B is also called the complement of B with respect
to A.

A/B={x|x€AAx¢&B}

>

Venn Diagram for A/ B




mmity of the Union of Two

Sets

e Inclusion-Exclusion U

|AU B| =|A| + | B] + |A N B .

Venn Diagram for 4, BANB AUB

 Example: Let A be the math majors in your class and B be the CS majors. To
count the number of students who are either math majors or CS majors, add
the number of math maﬁ)rs and the number of CS majors, and subtract the

number of joint CS/mat ma)ors

« We will return to this principle in Chapter 6 and Chapter 8 where we will
derive a formula for the cardinality of the union of n sets, where n is a positive

integer.
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Review Questions

Example: U=1{0,1,2,3,45,6,789,10} A={1,2,3,4,5}, B={4,5,6,7,8}
1. AUB
Solution: {1,2,3,4,5,6,7,8}
2. ANB
Solution: {4,5}
3 A
Solution: {0,6,7,8,9,10}
4, B
Solution: {0,1,2,3,9,10}
5. A-B
Solution: {1,2,3}
6. B-A
Solution: {6,7,8}
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Set Identities

e [dentity laws

AUuld=A ANU =A
¢ Domination laws

AuU=U Anbh=10
¢ [dempotent laws

AUA=A ANA=A
e Complementation law

(A=A

Continued on next slide 2>
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Set Identities

e Commutative laws

AUB=BUA ANB=BnNA

e Associative laws
AU(BUC)=(AuB)UC
AN(BNC)=(AnB)NC

¢ Distributive laws
AN(BuUul)=(AnB)Uu(AnC)
AUu(BNnC)=(AuB)Nn(Au(C)

Continued on next slide 2>
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Set Identities

® De Morgan’s laws

AUB=ANB ANB=AURB

e Absorption laws

AUANB)=A AnNn(AuB)=A

e Complement laws

AUA=U ANA=1(
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Proving Set lIdentities

e Different ways to prove set identities:

1. Prove that each set (side of the identity) is a subset of
the other.

2. Use set builder notation and propositional logic.

3.  Membership Tables: Verify that elements in the same
combination of sets always either belong or do not
belong to the same side of the identity. Use 1 to
indicate it is in the set and a 0 to indicate that it is
not.



/ \/

Proof of Second De Morgan Law

Example: Provethat AN B =AU RB
Solution: We prove this identity by showing that:

1) ANBCAUDBRB and

2) AUBCANRB

Continued on next slide 2>
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Proof of Second De Morgan Law

These steps show that: AN B C AU B

reANB by assumption

xrZANB defn. of complement

—((x € A) A (x € B)) defn. of intersection

—(x € A)V—(x € B) 1st De Morgan Law for Prop Logic

rZ AVzr é¢B defn. of negation
reAVxeB defn. of complement
re AUB defn. of union

Continued on next slide 2>
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Proof of Second De Morgan Law
These steps showthat: A UB C AN B

re AUB by assumption

(x € A)V (x € B) defn. of union

(x € A)V (x € B) defn. of complement

—(x € A)V ~(x € B) defn. of negation

—((x € A) A (x € B)) Dby 1st De Morgan Law for Prop Logic
—(x € AN B) defn. of intersection

reANB defn. of complement



_ Set-Builder Notation:

Morgan Law

ANB

{z|x € AN B}

{z|-(x € (AN B))}
{z|=(z € ANz € B}
{z|-(x € A)V —(z € B)}

{zlx ¢ AVax ¢ B}
{z|r € AV e B}
{z|]z € AU B}
AUB

econd De

by defn. of complement

by defn. of does not belong symbol
by defn. of intersection

by 1st De Morgan law

for Prop Logic

by defn. of not belong symbol

by defn. of complement

by defn. of union

by meaning of notation
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Functions

Definition: Let A and B be nonempty sets. A function f
from A to B, denoted f: A — Bis an assignment of each
element of A to exactly one element of B. We write
f(a) = b if bis the unique element of B assigned by the

function fto the element a of A. Students  Grades

O A
Carlota Rodriguez O/>O
B

transformations. Sandeep Patel

® Functions are sometimes
called mappings or

Jalen Williams O

OO0

C
D
F

Kathy Scott
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Functions

¢ A function f A > B can also be defined as a subset of
AXB (a relation). This subset is restricted to be a
relation where no two elements of the relation have
the same first element.

e Specifically, a function f from A to B contains one,
and only one ordered pair (a, b) for every element a€

A. Vz|r € A — Jyly € BA (z,y) € f]]

and v,y y2ll(@,y1) € fA (2, 92)] = y1 = 2]
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Functions

Given a function f: A — B: . f .
e We say f maps A to B or " o
fis a mapping from A to B. ! ;

e Ais called the domain of f.

e Bis called the codomain of f.

e If fla) = b,
e then b is called the image of a under f.
e ais called the preimage of b.

e The range of fis the set of all images of points in A under f. We
denote it by f(A).

e Two functions are equal when they have the same domain, the
same codomain and map each element of the domain to the
same element of the codomain.
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Representing Functions

e Functions may be specified in different ways:

e An explicit statement of the assignment.
Students and grades example.

e A formula.
f(x)=x+1
e A computer program.

A Java program that when given an integer n, produces the
nth Fibonacci Number (covered in the next section and also
inChapter 5).
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Questions
flay=? z A
The image of dis ? z

The domain of fis ? A
\>

S
,

® 0
O OO0 W

The codomain of f B

Phe preimage of yis ? b

flA) =7
The preimage(s) of z is (are) ? {a,c,d}
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Question on Functions and Sets
e If f: A— B and Sisasubset of A, then

f(S) =1f(s)ls € S}

A B
fla,b,c,}is ? {yz} Q
fled)is? 2 © ©

@ \>

Q . @
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Injections

Definition: A function f is said to be one-to-one , or
injective, if and only if fla) = f(b) implies that a = b for
all a and b in the domain of f. A function is said to be
an injection if it is one-to-one.

5 G
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Surjections

Definition: A function f from A to B is called onto or
surjective, if and only if for every element b € B
there is an element a € A withf(a) =0 . A
function fis called a surjection if it is onto.

A B
©

®
o ©)

@ — @



Bijections
Definition: A function fis a one-to-one

correspondence, or a bijection, if it is both one-to-one
and onto (surjective and injective).

B

©,

@

@
\

SONOR9

@
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Showing that f is one-to-one or onto

Suppose that f : A — B.
To show that f is injective Show that if f(x) = f(y) for arbitrary x, y € A with x # y,

lhenha= y
To show that f is not injective Find particular elements x, y € A such that x # y and
fx) = f ().

To show that f 1s surjective Consider an arbitrary element y € B and find an element x € A
such that T =

To show that f 151 of urjective Find a particular y € B such that f(x) # y for all x € A.
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Showing that f is one-to-one or onto

Example 1: Let fbe the function from {a,b,c,d} to
{1,2,3} defined by fla) = 3, fib) = 2, flc) =1, and f{d) =

3. Is fan onto function?

Solution: Yes, fis onto since all three elements of the
codomain are images of elements in the domain. If
the codomain were changed to {1,2,3,4}, f would not
be onto.

Example 2: Is the function f{x) = x> from the set of
integers onto?

Solution: No, fis not onto because there is no integer
x with x2 = —1, for example.
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Inverse Functions

Definition: Let f be a bijection from A to B. Then the
inverse of f, denoted f—1, is the function from B to A

definedas f~1(y) =z iff f(z) =y

No inverse exists unless fis a bijection. Why?

V()

® ([ J
a =f_](b) f(a) b= f(a)




Inverse Functions
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Questions

Example 1: Let fbe the function from {a,b,c} to {1,2,3}
such that fla) = 2, f(b) = 3, and f{c) = 1. Is f invertible

and if so what is its inverse?

Solution: The function f'is invertible because it is a
one-to-one correspondence. The inverse function f*
reverses the correspondence given by f, so f1(1) = c,

f1(2) =a, and f*(3) = b.
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Questions

Example 2: Let f:Z - Z be such that f{(x)=x+1.Isf
invertible, and if so, what is its inverse?

Solution: The function f'is invertible because it is a
one-to-one correspondence. The inverse function f*
reverses the correspondence so f*(y) =y - 1.
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Questions

Example 3: Let £ R —» R be such that f(z) = T2 Is f
invertible, and if so, what is its inverse?

Solution: The function f'is not invertible because it
is not one-to-one .
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Composition

e Definition: Let f: B> C, g: A = B. The composition of
fwith g, denoted f o g is the function from A to C

defined by o 00y — f(g(x))

(f © gla)

g(a) f(g(@)




omposition
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Composition
Example 1: If f(x) = % and 9(x) =2v+1 |
then
f(g(z)) = (2z + 1)

and

g(f(z)) =22% + 1



/ \/

Composition Questions

Example 2: Let g be the function from the set {a,b,c} to
itself such that g(a) = b, g(b) = ¢, and g(c) = a. Let fbe the
function from the set {a,b,c} to the set {1,2,3} such that

fla) =3, fib) =2, and f(c) = 1.
What is the composition of fand g, and what is the
composition of g and f.
Solution: The composition fog is defined by
feg (a)=f(g(a)) =f(b) =2.
feg (b)=f(g(b)) =f(c) =1.
feg ()=f(g(0)) =f(a) =3.
Note that gof is not defined, because the range of fis not a
subset of the domain of g.
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Composition Questions

Example 2: Let f and g be functions from the set of

integers to the set of integers defined by flx) = 2x + 3
and g(x) = 3x + 2.

What is the composition of fand g, and also the
composition of g and f?

Solution:

fog X)=fHg(x)=f(3x+2)=2(3x+2)+3 =6x+7
gof (x)=¢g(fix))=9g(2x+3)=32x+3)+2=6x+11
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Graphs of Functions

e Let fbe a function from the set A to the set B. The

graph of the function fis the set of ordered pairs
{(a,b) | a €A and f(a) = b}.

Graph of f{n) =2n + 1 Graph of f(x) = x?
from Z to Z fromZto Z
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Some Important Functions

® The floor function, denoted

flz) = |z]

is the largest integer less than or equal to x.

® The ceiling function, denoted

flz) = |z

is the smallest integer greater than or equal to x
3.5] =4 3.5] =3
—1.5]=-1 |-1.5|=-2

Example:
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Floor and Ceiling Functions

3 3~
2 2
| 1 4
|
3 2 1 1 3 -3 2 1 | 2 3

] -1

-2
3 -3

(@) y=[x] (b) y=I[x]

Graph of (a) Floor and (b) Ceiling Functions
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Floor and Ceiling Functions

TABILE 1 Useful Properties of the Floor
and Ceiling Functions.
(n 1s an integer, x 1s a real number)

(la) |x] =nifandonlyifn <x <n+1
(Ib) [x] =nifandonlyifn —1<x <n
(Ic) |x] =nifandonlyifx —1 <n<ux
(1d) [x]=nifandonlyifx <n <x +1

2) x—1l<|x|]<x<[x]<x+1

(3a) [—x]=—[x]
(3b) [—=x] = —[x]

(4a) |x+n]=|x]+n
4b) [x+n]l=[x]+n
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Proving Properties of Functions

Example: Prove that x is a real number, then
12x]=|x]| + [x+ 1/2]
Solution: Let x = n + €, where n is an integer and 0 < e< 1.
Case1: e<W
e 2x=2n+ 2¢ and [2x| =2n,since 0 < 2e< 1.
e | x+1/2|=n,sincex+%=n+(1/2+¢c)and0< Y2+ < 1.
e Hence, |2x] =2nand |x] + |x+ 1/2]=n+ n = 2n.
Case2: e=>%

e 2x=2n+2¢= (2n+1)+(2¢ —1) and |2x] =2n+ 1,
since0<2¢e-1<1.

e |[x+1/2|=|n+Q/2+¢)|=|n+1+ (¢-1/2)] =n+ 1since
0<e-1/2<1.

e Hence, [2x] =2n+1and |x] + |x+1/2]=n+(n+1) =2n+ 1. 4
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Factorial Function

Definition: f: N - Z*, denoted by f(n) = n! is the
product of the first n positive integers when n is a
nonnegative integer.

fln)=1:-2-(-1)'n, f(0) =0'=1

Examples . Stirling’s Formula:
=1 =1 n! ~ +v2mn(n/e)”
f)y=21=1-2=2 f(n) ~ g(n) = limn—eof(n)/9(n) = 1

f(6) =6!=1-2-3-45-6=720
f(20) = 2,432,902,008,176,640,000.



/ \/

Partial Functions (optional)

Definition: A partial function f from a set A to aset B is
an assignment to each element a in a subset of A, called
the domain of definition of f, of a unique element b in B.

e The sets A and B are called the domain and codomain of f,
respectively.

e We day that fis undefined for elements in A that are not in
the domain of definition of f.

e  When the domain of definition of fequals A, we say that f
is a total function.

Example: f: N = R where f(n) = Vn is a partial function
from Z to R where the domain of definition is the set of
nonnegative integers. Note that fis undefined for negative
integers.



